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Ising model in an oscillating magnetic field: Mean-field theory
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I consider the dynamics of a soft-spin Ising magnet, subject to the time-varying external magnetic field
h(t)=h cost. The system is modeled with a time-dependent Ginzburg-Landau equation and is studied
at a mean-field level. The time-averaged magnetization (/M) acts as the order parameter and divides the
temperature-# plane into two phases. In contrast to a previous result that predicted a dynamical tricrit-
ical point separating a line of continuous and discontinuous transitions in /%, I find that the transition is
always continuous. The previous work utilized Glauber dynamics which, it is here argued, becomes
inapplicable near the phase boundary line due to a critical slowing down.

PACS number(s): 05.70.Ln, 64.60.Cn, 05.50.+q

I. INTRODUCTION

There is in general little that is known about systems
far from equilibrium. In order to gather such an under-
standing I will focus on a particular system forced from
equilibrium by the action of a time-dependent field.
Specifically, the model is a set of Ising spins subject to the
external magnetic field 4 () =h cosQ¢; the magnetization
is taken to satisfy a time-dependent Ginzburg-Landau
equation. In the absence of the external field the system
is described by the usual ¢* Hamiltonian used to model
second-order phase transitions. However, when A (?) is
present it is no longer valid to use an equilibrium
(Boltzmann) distribution in calculating fluctuations,
which is why the modeling is done at the level of the
equation of motion. In the past [1], this system has been
modeled with Glauber dynamics [2], which utilizes the
equilibrium distribution. In the case when the period of
oscillation of the field is much greater than the relaxation
time of the magnetization this is a reasonable approxima-
tion. However, this is only the case for a limited range of
parameters, which does not include continuous phase-
transition lines; there, a critical slowing down invalidates
the use of Glauber dynamics.

Aside from its utility in approaching a general under-
standing of nonequilibrium systems, this model also de-
scribes certain types of measurements on spin systems [5].
For example, upon subjecting the sample to an oscillating
magnetic field and measuring the induced magnetization,
one can calculate the (frequency-dependent) response and
correlation functions. As will be discussed, what is
sought is something that is useful for large external fields,
something beyond a lowest-order response. Also, this
model is relevant for more practical situations, such as
for machines which thermally anneal metallic samples by
subjecting them to an oscillating magnetic field [6].

The outline of the paper is as follows. In Sec. II the
equation of motion for the magnetization is given, and as-
sumptions used in applying it to a physical system are
discussed. In Sec. III, after mentioning the order param-
eter that has been used for this system, the stability of the
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magnetization in each phase is discussed; this is used to
determine the phase boundary. In Sec. IV the order pa-
rameter is found for a range of parameters and plotted in
the temperature-h plane. There it is shown that the
time-averaged magnetization changes very suddenly, but
in fact not discontinuously. The behavior of the phase
boundary line as a function of the parameters is given. In
Sec. V two simple analytical approaches are used to find
the magnetization in each of the two phases and are com-
pared with the numerical solution. In Sec. VI a compar-
ison is made to a previous work which (implicitly) pre-
dicts a discontinuous phase transition. It is argued that
their work is in error, as it relies on Glauber dynamics,
which is explicitly shown to break down near the phase
boundary line (due to critical slowing down). Finally, a
summary is presented in Sec. VII.

II. MODEL

The modeling of the system is based on that used when
there is no external magnetic field. Beginning with
the (coarse-grained) time-dependent Ginzburg-Landau
description, the magnetization is linearly coupled with an
oscillating magnetic field. As is always (at least implicit-
ly) done when modeling with stochastic equations, it is
assumed there is a clear separation of time scales between
that of the noise and the characteristic scales of the mag-
netization and the oscillating field. For an Ising magneti-
zation the equation of motion is

oH

8,1/;:—1‘075—¢—+v N (2.1

H[Y]= [ d% {(L[ro0?+ (VY214 (ue /40 —h (1)} .
(2.2)

The noise is zero-mean Gaussian with covariance
(Vr, t)v(r',t")) =2T8(r —r")8(t —t') , (2.3)

where ( ) denotes a noise average. It is not known how
to rigorously justify this choice of the noise correlation;

3950 ©1993 The American Physical Society



47 ISING MODEL IN AN OSCILLATING MAGNETIC FIELD: ...

further specification would require knowledge of the (as
of yet unknown) distribution function [7]. H[¢] is the
usual ¢* Hamiltonian for the order-parameter field ¥(r,?),
the local magnetization. r, is the reduced temperature
and is < T — T, T and T, are the temperature and (un-
renormalized) critical temperature, respectively. Also,
the quartic coupling u, is a positive constant and the
period of oscillation equals 7=2 /€. The (unrenormal-
ized) kinetic coefficient of the magnetization is I', which
can be found through linewidth measurements of the fer-
romagnetic resonance. Typical (noncritical) spin relaxa-
tion times are on the order of 10~ 8 sec [8].

As the external field oscillates, it drives the magnetiza-
tion in the sample to oscillate as well. In a real physical
system this leads to dissipation; an amount of heat
~ f ow(dh /dt)dt is deposited in the sample with each
period. Because of this, the above model is only physical-
ly applicable to systems that are sufficiently thin along
one dimension (so that heat may diffuse away to an adja-
cent thermal bath). This situation is not unique to this
treatment; it also arises with linear-response theory [9].
The lesson is that another field is needed to account for
the heat and so provide a thermodynamically complete
description.

In this paper the noise- (and time-) averaged magneti-
zation is sought. After dependences on initial conditions
have been forgotten (assuming a noncritical system), it is
expected that the magnetization will settle into a period-
ic, spatially independent function M (). The equation of
motion that M (t) satisfies can be found perturbatively by
shifting ¥— 1+ M (¢) and then demanding () =0 [10].
The lowest-order contribution to this condition is simply

,M=—Ty[reM+u,M*—h(1)]; (2.4)

this also follows from Eq. (2.1) by ignoring the noise and
gradient terms. This equation will be used to study the
system at a mean-field level.

III. PHASE BOUNDARY

The periodic magnetization M(t) (with period
7=2m /1) may be averaged over one period to give the
order parameter

m=L M 3.1)

T t

which becomes independent of the time ¢ once the initial
conditions have been forgotten [11]. As has been dis-
cussed [1], there are two phases that appear; one is
characterized by M =0, the zero (Z) phase, and the other
by JMF0, the nonzero (NZ) phase [12]. The stability of
the magnetization will now be studied in order to find the
phase boundary separating the Z and NZ phases.

Denoting a time-average with an overbar, M(z) is
separated into its constant (my,=M) and purely oscillat-
ing (m=M —m,) parts. Making the substitution
M =m+#i into Eq. (2.4) and averaging over one period,
it follows

u0ﬁ7§+3u0mo;ﬂ—f+romo+uom8=0 . (3.2)
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Starting in the NZ phase and then approaching the phase
boundary (i.e., my—07) gives

ro+3u Or;z_f =0,
since 7°=0 in the Z phase. Here it was implicitly as-
sumed that it is possible to take the limit of m, to zero,
i.e, that m, does not change discontinuously. However,
as will be seen later, numerical simulation shows that m,
always does change continuously, and so Eq. (3.3) always
characterizes the Z-NZ phase boundary.
The equation of motion 7 satisfies is found by substi-
tuting M =m +7i into Eq. (2.4) and then using the con-
straint of Eq. (3.2) to get

(3.3)

3, =—T{(ro+3ugm3)m +3ugmo(m>—m?)

tug(m3—m ) —h (1)} . (3.4)

This can be solved (perturbatively, for example) to get an
equation for  as a function of my. In turn, that may be
used in conjunction with Eq. (3.2) to arrive at a closed
equation, involving only m,. This method of calculating
the average magnetization m will be pursued in Sec. V.

The (linear) stability of M with respect to a perturba-
tion €(¢) is now considered. After substituting
M =m,+m(t)+e(t) into Eq. (2.4), and using Eq. (3.4), it
follows

9,e(t)=—Tye(t){ro+3uy(my+m)*}+0(€) . 3.5)
The time-independent terms in the curly brackets are
used to obtain the relaxation rate o to an infinitesimal
perturbation:

w=Ty[ro+3uy(mi+md]; (3.6)
in the Z and NZ phases, this becomes, respectively,

w;=Tolro+3ugm?], 3.7)

ong=Tolro+3ugmd+m?)] . (3.8)

It is noted that the vanishing of the relaxation rates cor-
responds to the phase boundary, as defined by Eq. (3.3).
Although spatial coordinates do not appear explicitly
in Eq. (2.4), M (2) is derived from Eq. (2.1) and so carries
the same dimension as ¥(r,?); thus it is sensible to make a
dimensional analysis in terms of length scales. Aside
from the lengths associated with static quantities [i.e.,
Le=(|ro])7'? and L,=(uoh®)~'"?], there is a new
length scale L, =(T,/Q)!"2. Normally T, can only enter
as a length through the combination I'y¢. However, since
there is now the characteristic time dependence Q~litis
possible to have I'y (or L) appear in time-independent
quantities. L, may be interpreted as the correlation
length, after quenching and waiting a time 1/Q (assum-
ing exponential growth, which is only reasonable initial-
ly). The appearance of such a length in static quantities
does not occur in simpler near-equilibrium models, where
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the statics can be shown to be independent of the dynam-
ics [13]. This should be compared with the work of
Onuki and Kawasaki [14] on fluid under a shear flow.
There it was seen that the shear induced a length scale
which represented the largest size a fluctuation could
grow to before being destroyed by the shear. A similar
situation also arises with liquid crystals in a shear flow
[15].

It is possible to obtain a scaling behavior of the Z-NZ
boundary curve by considering two limiting cases in com-
paring L, to L, and L,. First, upon substituting
M (t)=hni(t), Eq. (3.3) may be rewritten as

I lrﬁh

=3ughm? ‘r(,c,ﬂ,uow . (3.9)

Lo

In the limit Ly <<L; and L,, both r, and uyh® are
small. Also, from Eq. (3.4) it seems reasonable that me
does not vanish as r,, and A approach zero. Thus, scal-
ing out the dimension of 77 “ with L, it follows, for small
o, that

r, |°

%) (3.10)

— ~ 2
Foe ~Uph

In the limit L,,L, <<L,, (taking without loss of generali-
ty L, <<L¢), ro, may be written as (now scaling with
respect to L)

—'roc =u0h Z(uohz)vZ/3

7oc & 1
(u0h2)1/3 ’ 1“0 (u0h2)1/3 ’

X f 1], @1

where f is a dimensionless scaling function; from this it is
easily seen that

—ro. ~(ugh?)!”3 (3.12)

for large —r.. It must be remembered that both of these
scaling results cannot be proved from these arguments,
since it must be known that 7~ is well behaved in these
limits, as has been assumed. However, they will be vindi-
cated in the next section, where these behaviors are ex-
plicitly computed (see Fig. 2).

It is easy to show that all phase boundary curves in the

ro-h plane can be scaled onto a single curve. Scaling M?
as
31172
7o Ty To
M= o € roq ok 4o |5 , (3.13)

with g a dimensionless function, the equation for the
phase boundary [i.e., Eq. (3.3)] becomes 3g =1. This im-
plies that if we work in the scaled coordinates
Fo=ro(Ty/Q) and A=h[uy(Ty/Q)*]'/? there will be a
single phase boundary curve for all choices of I'y; and Q.
(Note that when noise is included, M2 must be expanded
in terms of u, and uyh?, as opposed to just uyh?.)
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IV. NUMERICAL SOLUTION

A fourth-order Runge-Kutta scheme is used to solve
for M (t), with dt =0.01, and 400 points per period of os-
cillation. Near the phase boundary, the time step was in
some cases decreased to dt =0.0001; different ratios of
Q /Ty were found by varying I';. Also, the time step was
increased and decréased by a factor of 2 to check the reli-
ability of the simulation. After letting the system relax
from its initial condition for a sufficient time (which
varied greatly depending on the nearness to the Z-NZ
boundary), the magnetization was measured for several
periods. That magnetization is then used as the initial
condition for the next run at a higher A. No hysteresis
was seen as h was increased and decreased through the
boundary.

The Z-NZ phase boundary is shown in Fig. 1 for three
different values of ©/I';. These curves were scaled onto
one universal curve (see Fig. 2) using the scaled coordi-
nates ‘r‘o,i{, which were argued for earlier. For low tem-
peratures, the general behavior of M for small and large
h is understandable. When # is small the magnetization
can be thought of as being determined by the two equilib-
rium wells, with minima at +£(—r,/u,)'/? (disregarding
fluctuation effects). Then the external field merely adds a
small oscillating component to the constant part. On the
other hand, when the external field is large, one of the
minima may disappear (for part of the period), allowing
the magnetization to oscillate back and forth equally be-
tween the positive and negative wells. The scaling
behavior of r,.(h) that was alluded to earlier can be
checked by making a log-log plot of the data of Fig. 2;
the result is

5.08ughA(Ty/Q)%, ry—0

0c = 11.89(ugh)'3, ry—>—o | “.1)

—Fr

4.2)

which is in agreement with the scaling behaviors of Egs.
(3.10) and (3.12).

A three-dimensional plot of J is given in Fig. 3,
offering an overview of the phase diagram. Of note is the

20 T . S

7o

FIG. 1. Plots of the phase boundary lines separating the
M =0 (Z phase) and M0 (NZ phase) phases for the three cases
of (1/27)(Q/T,)=0.1, 0.5, and 1.0.
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-0.5 0.0

7o
FIG. 2. The three curves of Fig. 1 appear as one if they are

plotted on the scaled axes (7y,7), where 7o=ry(Ty/Q),
A=h[uy(T/0)*])'"? [see Eq. (3.13)].

sharp dropoff that develops in #(4) at low temperatures.
However, it is easier to ascertain changes in the slope of
M by taking slices of it, say, at several different tempera-
tures (see Fig. 4). Although the slope in M vs h becomes
very steep there, a close inspection never revealed a
discontinuous jump. A steep slope could also be found at
a fixed ry upon lowering Q /I’ (as required by the depen-
dence of 7, and & on Q/T), as in Fig. 5(a). An expanded
view of M(h) near the phase boundary for the most
sharply increasing M is shown in Fig. 5(b). This initial
slow increase in /M occurs over a smaller range in 4 for
lower temperatures, but was never found to vanish. The
similarities in the general shape of this curve and Fig. 4
can be understood from the scaling relation (which fol-
lows easily from dimensional analysis)

M , (4.3)

|y
20 1 20 _h
stg, Q Ch |=s'7°m [ro,s Q7

where use was made of the fact that u, always enters
with & as uohz. Thus, aside from a scaling of the #M and

<7

Mmoo
i | ":,c'?' \\ ILL
i) ‘“ )

1.0

FIG. 3. M(ry,h) as calculated with a Runge-Kutta scheme.
Of note is the sharp slope of MM (h) for lower temperatures. At
A =0 the equilibrium magnetization is recovered.
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0.0 0.5 1.0 1.5 2.0

FIG. 4. M(h) at (1/27)(Q/Ty)=0.1 at —r,=0.1, 0.4, and
0.7, corresponding to the solid, dashed, and dotted lines, respec-
tively. The general similarities of shape between these and the
curves of Fig. 3 can be understood from a scaling relation J/
obeys [see Eq. (4.14)].

h axes, a plot of M(h) at a given temperature and fre-
quency is similar in shape to JI(h) at a higher tempera-
ture but lower frequency.

There are two limits where one would expect to recov-
er equilibrium results from the phase diagram M(ry,h).

(a)

4.0

3.0

-0.0
2.230

2.235
h

FIG. 5. (a) M(h) for ro=—1.0 and (1/27)(Q/T,)=0.1, 0.2,
and 0.3, corresponding to the solid, dashed, and dotted lines, re-
spectively. In the first case it appears as though U changes
discontinuously, although it actually does not. (b) An expanded
view of the first case of (a), showing that /M increases continu-
ously. The range of 4 for which this initial slow increase takes
place shrinks with lower temperature.

2.240
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As h—071, M approaches the static magnetization
+(—ro/uy)/% This limiting case occurs smoothly be-
cause, as already mentioned, when #4 is small M (¢) con-
sists of a static part [which is approximately
+(—ry/uy)’? and a small oscillating piece; as A —0"
the oscillating piece vanishes. Also, in the limit Q—0
one might (naively) expect that the effect of a static exter-
nal field on the Ising model would be recovered. While
this is true if one is considering M (¢) with equilibrium in-
itial conditions, this is not the case if one is working with
M(ry,h). The reason is that (1) it is necessary to take
Qt—0, and not just Q—0 in order to recover the initial
condition [16] and (2) the order parameter M always in-
volves Q¢ up to 2, since it is defined as M (¢) integrated
over one period. Hence, it is not possible to recover the
desired static result.

V. APPROXIMATE SOLUTIONS

Here a simple linear response and a Fourier solution is
used to approximately calculate M (¢) in the Z phase.
The linear-response solution is

Mo)=Co " e " nrar
hTy
W cos(Qt —6), (5.1)

where w,=Tyry and tan6=Q/w, The Fourier expan-
sion involves the series Mp(¢)= 3, m, cos(nQt +¢,).
To lowest order, m, is defined through

h2=miGuom?i+ry)*+(Q/Ty)’mi . (5.2)

These approximate solutions are substituted into
rot+3u M =0 (M =My,My;) to get equations for the
phase boundary curves (see Fig. 6). Both give the correct
qualitative behavior, but have quantitative differences. In
both approximate solutions —ro, =~ Augh*(Ty/Q)* as
ro—0, and —ro, ~B(uoh?)!'”® as ry—— . For the
linear-response solutlon A=3 and B=(3 )1/ 3, while for
the Fourier solution 4 =32 and B=(2 )3, 3 These scaling
behaviors are in agreement with that from dimensional

1.0

0.0

70

FIG. 6. Phase boundary lines as found by approximate
schemes utilizing a linear-response (LR) and a Fourier (F) ex-
pansion solution for (1/27)(Q/I',)=0.5. The Runge-Kutta
(RK) solution is included for comparison.
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FIG. 7. Calculation of M (ry,h) using a simple approximation
scheme. The qualitative shape is reproduced but the sharp
dropoff is not seen.

analysis [see Egs. (3.10) and (3.12)] and numerical simula-
tions [see Egs. (4.1) and (4.2)].

Likewise, in the NZ phase it is possible to calculate the
average magnetization in an approximate way. Taking
the linear-response solution as the lowest-order solution
for i, it is used in conjunction with Eq. (3.2) to find
M(ry,h) (see Fig. 7). While there is rough qualitative
agreement between this and the plot obtained using a
Runge-Kutta scheme, this approximate calculation does
not show the same sharp dropoff for lower temperatures.

VI. COMPARISON TO PREVIOUS WORK

For systems not too far from equilibrium it is not un-
reasonable to assume a Boltzmann distribution in
describing probabilities of fluctuations. More specifically,
this is a reasonable choice if there are a sufficient number
of spin flips during one period of oscillation. This
amounts to the requirement that w >>Q, where w is the
effective spin-relaxation rate; indeed, this is one of the im-
plicit assumptions of Glauber dynamics. However, this
assumption cannot be expected to always hold true, for
instance, near the phase boundary where w—0 (due to
critical slowing down) and Q remains finite. To roughly
indicate where this condition (@ >>) breaks down, the
equation w/Q =1 is plotted in Fig. 8 in the Z and NZ
phases (i.e., for ® =wz,wyz, respectively). What is seen is
that Glauber dynamics is not valid within a region
bounding the phase boundary, and this region shrinks for
lower temperatures. The conclusion is that the use of
Glauber dynamics by Tomé and de Oliveira [1] in
describing the Z-NZ phase boundary cannot be justified.
Thus, if there is any inconsistency between their work
and that presented here, it would be expected they are in
error, due to the breakdown of the condition w>>().
Indeed, in their work there was an overlap of the Z and
NZ phases, implying a discontinuous transition for low
enough temperatures as well as a dynamical tricritical
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To
FIG. 8. The dotted line is the phase boundary curve of Fig. 2.

The upper and lower solid lines are where w,/Q=1 and

wonz/ Q= %, respectively.  Between them (i.e., where
wz N2/ < %) is where Glauber dynamics is invalid because the

spins do not have sufficient time to relax during a time ~Q ..

point. Such a result was not found in this treatment, and
so it is not expected to be true. Finally, it is interesting to
note that these two different results should nearly coin-
cide for low temperatures, since the above-mentioned re-
gion shrinks to a great extent. In fact, as was shown in
Fig. 3, M drops very steeply in that region. So although
M(h) seems as though it will be discontinuous in 4, it is
actually continuous, as has been shown (at least for the
range of parameters studied).

Finally, it is noted that the simulations that have been
done to date have only been able to confirm the existence
of the Z and NZ phases and the sudden change in /i for
lower temperatures. They have not been accurate enough
to be able to discern a dynamical tricritical point. Also,
there have been studies of the scaling behavior of the area
of a hysteresis loop by Monte Carlo simulations [3,4,17]
and cell dynamical simulations [18].

VII. SUMMARY

In this paper I have studied a spin system forced from
equilibrium by a time-dependent external field. At least
for this particular case, means were found that were use-
ful in characterizing the different phases as well as their
stability. Instead of relying on an approximate form of
the nonequilibrium distribution functional (of which no
general form is known), the mean-field behavior was
modeled with a phenomenological equation of motion.
This was used to compute the time-averaged magnetiza-
tion (M) as a function of temperature and 4; a length-
scale (formed from dynamic parameters only) was impor-
tant in determining the overall shape of the phase dia-
gram of /.

As opposed to a previous work which found discon-
tinuous and continuous transitions in /1l as a function of
h, I found the transition to always be continuous. The
previous method was based on Glauber dynamics (GD),
which was here argued to become invalid near the phase-
transition line. Because GD utilizes the equilibrium dis-
tribution, one can only expect it to possibly be a useful
approximation in some limiting cases. Indeed, it was
seen that GD only agreed with the work presented here
in the adiabatic approximation, when the time scale of
the external field is much greater than that of the magne-
tization.
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